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3 Comparing Correlation Measures

Preface
This document provides a brief comparison of the ubiquitous Pearson
product-moment correlation coefficient with other approaches measur-
ing dependencies among variables, and attempts to summarize some
recent articles regarding the newer measures. No particular statistical
background is assumed besides a basic understanding of correlation.
To view graphs as they are intended to be seen, make sure that the
’enhance thin lines’ option is unchecked in your Acrobat Reader prefer-
ences, or just use another pdf reader. Current version date May 2, 2013. Orig-

inal April 2013. I will likely be coming
back to this for further investigation and
may make notable changes at that time.
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Introduction
The Pearson correlation coefficient has been the workhorse for un-
derstanding bivariate relationships for over a century of statistical
practice. It’s easy calculation and interpretability means it is the go
to measure of association in the overwhelming majority of applied
practice.

Unfortunately, the Pearson r is not a useful measure of dependency
in general. Not only does correlation not guarantee a causal relation-
ship as Joe Blow on the street is quick to remind you, a lack of cor-
relation does not even mean there is no relationship between two
variables. For one, it is best suited to continuous, normally distributed
data1, and is easily swayed by extreme values. It is also a measure of 1 Not that that stops people from using it

for other things.linear dependency, and so will misrepresent any relationship that isn’t
linear, which occurs very often in practice.

Here we will examine how the Pearson r compares to other mea-
sures we might use for both linear and nonlinear relationships. In
particular we will look at two measures distance correlation and the
maximal information coefficient.

Pearson Correlation

As a reminder, the sample Pearson r is calculated as follows:

covxy =
N
∑

i=1

(xi−X̄)(yi−Ȳ)
N−1

rxy =
covxy
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In the above, we have variables X and Y for which we have N paired
observations. The Pearson r is a standardized covariance, and ranges
from -1, indicating a perfect negative linear relationship, and +1,
indicating a perfect positive relationship. A value of zero suggests no
linear association, but does not mean two variables are independent, an
extremely important point to remember.

The graph to the right shows examples of different correlations
with the regression line imposed. The following code will allow you to
simulate your own.

library(MASS)

cormat = matrix(c(1, 0.25, 0.25, 1), ncol = 2) #.25 population correlation

set.seed(1234)

# empirical argument will reproduce the correlation exactly if TRUE

mydat = mvrnorm(100, mu = c(0, 0), Sigma = cormat, empirical = T)

cor(mydat)

## [,1] [,2]

## [1,] 1.00 0.25

## [2,] 0.25 1.00
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Spearman’s Measure

More or less just for giggles, we’ll also take a look at Spearman’s ρ. It
is essentially Pearson’s r on the ranked values rather than the observed
values2. While it would perhaps be of use with extreme values with 2 If you have ordinal data you might also

consider using a polychoric correlation,
e.g. in the psych package.

otherwise normally distributed data, we don’t have that situation here.
However since it is a common alternative and takes no more effort to
produce, it is included.

cor(mydat, method = "spearman") #slight difference

## [,1] [,2]

## [1,] 1.0000 0.1919

## [2,] 0.1919 1.0000

cor(rank(mydat[, 1]), rank(mydat[, 2]))

## [1] 0.1919

Hoeffding’s D

Hoeffding’s D is another rank based approach that has been around a
while3. It measures the difference between the joint ranks of (X,Y) and 3 Hoeffding (1948). A non-parametric

test of independence.the product of their marginal ranks. Unlike the Pearson or Spearman
measures, it can pick up on nonlinear relationships, and as such would
be worth examining as well.

library(Hmisc)

hoeffd(mydat)$D

## [,1] [,2]

## [1,] 1.00000 0.01162

## [2,] 0.01162 1.00000

Hoeffding’s D lies on the interval [-.5,1] if there are no tied ranks,
with larger values indicating a stronger relationship between the vari-
ables.

Distance Correlation

Distance correlation (dCor) is a newer measure of association (Székely
et al., 2007; Székely and Rizzo, 2009) that uses the distances between
observations as part of its calculation.

If we define a transformed distance matrix4 A and B for the X and 4 The standard matrix of euclidean
distances with the row/column means
subtracted and grand mean added.
Elements may be squared or not.

Y variables respectively, each with elements (i,j), then the distance
covariance is defined as the square root of:

V2
xy = 1

n2

n
∑

i,j=1
Aij Bij
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and dCor as the square root of

R2 =
V2

xy
VxVy

Distance correlation satisfies 0 ≤ R ≤ 1, and R = 0 only if X and Y
are independent. In the bivariate normal case, R ≤ |r| and equals one
if r± 1 .

Note that one can obtain a dCor value for X and Y of arbitrary di-
mension (i.e. for whole matrices, one can obtain a multivariate es-
timate), and one could also incorporate a rank-based version of this
metric as well.

Mutual Information and the Maximal Information Coefficient

Touted as a ’correlation for the 21st century’ (Speed, 2011), the max-
imal information coefficient (MIC) is based on concepts from informa-
tion theory. We can note entropy as a measure of uncertainty, defined
for a discrete distribution with K states as:

H(X) = −
k
∑

i=k
p(X = k) log2 p(X = k) A uniform distribution where each state

was equally likely would have maximum
entropy.Mutual Information, a measure of how much information two vari-

ables share, then is defined as:

I(X; Y) = H(X) +H(Y)−H(X, Y)

or in terms of conditional entropy:

I(X; Y) = H(X)−H(X|Y)

Note that I(X; Y) = I(Y; X). Mutual information provides the
amount of information one variable reveals about another between
variables of any type, ranges from 0 to ∞, does not depend on the
functional form underlying the relationship. Normalized variants are
possible as well.

For continuous variables, the problem becomes more difficult, but if
we ’bin’ or discretize the data, it then becomes possible. Conceptually
we can think of placing a grid on a scatterplot of X and Y, and assign
the continuous x (y) to the column (row) bin it belongs to. At that
point we can then calculate the mutual information for X and Y.

I(X; Y) = ∑
X,Y

p(X, Y)log2
p(X,Y)

p(X)p(Y)

With p(X, Y) the proportion of data falling into bin X, Y, i.e. p(X, Y) is
the joint distribution of X and Y.

The MIC (Reshef et al., 2011) can be seen as the continuous vari-
able counterpart to mutual information. However, the above is seen
as a naïve estimate, and typically will overestimate I(X; Y). With the
MIC a search is done over various possible grids, and the MIC is the
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maximum I found over that search, with some normalization to make
the values from different grids comparable.

MIC(X; Y) = max
X,Ytotal<B

I(X;Y)
log2(min(X,Y))

In the above, I is the naïve mutual information measure, which is
divided by the lesser number of X or Y bins. X, Ytotal is the total num-
ber of bins, B is some number, somewhat arbitrarily chosen, though
Reshef et al. (2011) suggest a default of N.6 or N.55 based on their
experiences with various data sets.

The authors make code available on the web5, but just for demon- 5 See the appendix regarding an issue I
found with this function.stration we can use the minerva library as follows6.
6 While the package availability is nice,
the mine function in minerva works
relatively very slow (even with the
parallel option as in the example).

library(minerva)

mine(mydat, n.cores = 3)$MIC

## [,1] [,2]

## [1,] 1.0000 0.2487

## [2,] 0.2487 1.0000

MIC is on the interval [0, 1] where zero would indicate indepen-
dence and a 1 would indicate a noiseless functional relationship. With
MIC the goal is equitability- similar scores will be seen in relationships
with similar noise levels regardless of the type of relationship. Because
of this it may be particularly useful with high dimensional settings to
find a smaller set of the strongest correlations. Where distance correla-
tion might be better at detecting the presence of (possibly weak) depen-
dencies, the MIC is more geared toward the assessment of strength and
detecting patterns that we would pick up via visual inspection.

Linear Relationships
Just as a grounding we will start with examination of linear relation-
ships. Random (standardized) normal data of size N = 1000 has
been generated 1000 times for population correlations of -.8, -.6, -.4,
0, .4, .6, and .8 (i.e. for each correlation we create 1000 x,y data sets
of N = 1000). For each data set we calculate each statistic discussed
above.

Results

Distributions of each statistic are provided in the margin7 (squared 7 For this and the later similar graph,
rotate the document in for a better view.values for Pearson and Spearman measures). Means, standard devia-

tions, and quantiles at the 2.5% and 97.5% levels are provided in the
appendix. No real news to tell with the Pearson and Spearman corre-
lations. The other measures pick up on the relationships in a manner

http://www.exploredata.net/Downloads/MINE-Application
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we’d hope, and assign the same values whether the original linear re-
lation is positive or negative. Interestingly, the Hoeffding’s D and MIC
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appear to get more variable as the values move away from zero, while
for the dCor gets less so. At first glance the MIC may seem to find
something in nothing, in the sense it doesn’t really get close to zero for
the zero linear relationship. As seen later, it finds about the same value
for the same pattern split into four clusters. This is a function of sam-
ple size, where MIC for independent data approaches 0 as N → ∞. See
the supplemental material for Reshef et al. (2011), particularly figure
S1. I also provide an example of MICs for different sample sizes and
standard deviations in the appendix.

The take home message at this point is that one should feel comfort-
able using the other measures for standard linear relationships, as one
would come to the same relative conclusions as one would with the
Pearson r. Note that for perfect linear relations all statistics would be
1.0.

Other Relationships
More interesting is a comparison of these alternatives when the rela-
tionship is not linear. To this end, seven other patterns are investigated
to see how these statistics compare. In the margin are examples of the
patterns at two different noise levels. The patterns will be referred to
as wave, trapezoid, diamond, quadratic, X, circle and cluster.

Results

Distributional results for the distance correlation and MIC can again
be seen in the margin, related statistics and distributions for the those
and the other statistics can be found in the appendix. Neither Pear-
son’s r nor Spearman’s ρ find a relationship among any of the patterns
regardless of noise level, and will no longer be a point of focus.

Less noisy

Hoeffding’s D shows very little variability within its estimates for any
particular pattern, and does not vary much between patterns (means
range 0 to .1). In this less noisy situation Hoeffding’s D does pick up
on the quadratic pattern relative to the others, followed by the X and
circle patterns, but in general these are fairly small values for any
pattern.

The dCor and MIC show notable values for most of these patterns.
The dCor finds the strongest relationship for the quadratic function,



9 Comparing Correlation Measures

followed by the X, circle, the trapezoidal and wave patterns in a group,
with the cluster pattern near zero. The MIC finds a very strong rela-

dcor
M

IC

Less NoiseMore Noise

0.0
0.1

0.2
0.3

0.4
0.00

0.25
0.50

0.75
1.00

P
atterncircle

cluster

quadra

trap1

trap2

w
ave

X

N
onlinear R

elationships

tionship for the wave pattern, followed by the quadratic, about the
same for the circle and X pattern, and the rest filling out toward its
lower values. Just as before, the MIC won’t quite reach 0 for N = 1000,
so those last three are probably reflective of little dependence accord-
ing to MIC.

Noisier

With more noise, Hoeffding’s D does not pick up on the patterns well;
the means now range from 0 to .02. The dCor maintains its previous
ordering, although in general the values are smaller, or essentially
the same in the case of the trapezoidal and cluster patterns for which
strong dependency was not uncovered previously. The MIC still finds
a strong dependency in the wave pattern, as well as the X and cir-
cle, but the drop off for the quadratic relationship is notable, and is
now deemed less of a dependency than the circle and X patterns. The
remaining are essentially the same as the less noisy situation. This sug-
gests that for some relationships the MIC will produce the same value
regardless of the amount of noise, and the noise level may affect the
ordering of the strength one would see of different relationships.

Summary
Pearson’s r and similar measures are not designed to pick up nonlinear
relationships or dependency in a general sense. Other approaches such
as Hoeffding’s D might do a little better in some limited scenarios, and
a statistical test8 for it might suggest dependence given a particular 8 The hoeffd function does return a

p-value if interested.nonlinear situation. However it appears one would not get a good
sense of the strength of that dependence, nor would various patterns of
dependency be picked up. It also does not have the sort of properties
the MIC is attempting to hold.

Both distance correlation and MIC seem up to the challenge to find
dependencies beyond the linear realm. However neither is perfect, and
Kinney and Atwal (2013) note several issues with MIC in particular.
They show that MIC is actually not equitable9, the key property Reshef 9 The R2 measure of equitabilitity Reshef

et al. were using doesn’t appear to be a
useful way to measure it either.

and co. were claiming, nor is it ’self-equitable’ either (neither is dCor).
Kinney and Atwal also show, and we have seen here, that variable
noise may not affect the MIC value for certain relationships, and they
further note that one could have a MIC of 1.0 for differing noise levels.

As for distance correlation, Simon and Tibshirani (2011, see ad-
ditional information for a link to their comment) show that dCor
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exhibits more statistical power than the MIC. We have also seen it will
tend to zero even with smaller sample sizes, and that it preserved the
ordering of dependencies found across noise levels. Furthermore, dCor
is straightforward to calculate and not an approximation.

In the end we may still need to be on the lookout for a measure that
is both highly interpretable and possesses all the desirable qualities we
want, but we certainly have do have measures that are viable already.
Kinney and Atwal (2013) suggest that the issues surrounding mutual
information I that concern Reshef et al. were more a sample size
issue, and that those difficulties vanish with very large amounts of
data. For smaller sample sizes and/or to save computational costs,
Kinney and Atwal suggest dCor would be a viable approach.

I think the most important conclusion to draw is to try something
new. Pearson’s simply is not viable for understanding a great many
dependencies that one will regularly come across in one’s data adven-
tures. Both dCor and mutual information seem much better alterna-
tives for picking up on a wide variety of relationships that variables
might exhibit, and can be as useful as our old tools. Feel free to experi-
ment!
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Appendix
Mine Results

Note on the rMine code available at http://www.exploredata.net/
Downloads/MINE-Application. I have come across a couple of issues.
One is that it will simply not work (as the Tibshirani comment refers
to it, a ’glitch’), producing a missing value. But in addition to that, I
found that it also appears to produce odd values every once in a while.
Consider the following graphs in which various notably high linear
relationships are examined, with the rMine function and the mine
function from the minerva respectively. The rMine function bounces
around quite a bit, even tending toward very low values on regular oc-
casion, although the peak of the distribution is about right. In contrast
the minerva function shows more symmetric and stable distributions,
even with a little bit of bump in the tails. The rMine code was beta and
dated Jan. 2012, so it may have changed by the time you play with it.
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Statistics: Linear Relationships

Means.
pop. pearson spearman hoeffd dcor MIC

.8 0.799 0.785 0.255 0.755 0.513

.6 0.600 0.582 0.113 0.552 0.321

.4 0.399 0.383 0.044 0.363 0.211
0 -0.001 -0.001 0.000 0.055 0.133

-.4 -0.399 -0.384 0.044 0.363 0.210
-.6 -0.600 -0.582 0.113 0.552 0.320
-.8 -0.799 -0.785 0.254 0.755 0.512

Standard deviations.
pearson spearman hoeffd dcor MIC

0.011 0.013 0.014 0.013 0.024
0.020 0.022 0.011 0.021 0.021
0.027 0.028 0.007 0.026 0.016
0.031 0.031 0.000 0.010 0.007
0.027 0.027 0.007 0.025 0.014
0.020 0.022 0.011 0.021 0.020
0.012 0.013 0.014 0.013 0.023

Quantiles at the 2.5% and 97.5% levels.
pearson spearman hoeffd dcor MIC

[0.777 0.820] [0.758 0.810] [0.228 0.282] [0.729 0.780] [0.467 0.560]
[0.560 0.640] [0.540 0.624] [0.093 0.135] [0.513 0.593] [0.281 0.366]
[0.345 0.452] [0.328 0.439] [0.031 0.059] [0.311 0.416] [0.182 0.242]

[-0.062 0.060] [-0.062 0.058] [0.000 0.001] [0.040 0.080] [0.120 0.149]
[-0.449 -0.344] [-0.436 -0.327] [0.030 0.058] [0.309 0.412] [0.183 0.240]
[-0.638 -0.561] [-0.624 -0.538] [0.093 0.135] [0.509 0.592] [0.282 0.360]
[-0.821 -0.775] [-0.810 -0.757] [0.226 0.281] [0.726 0.780] [0.466 0.558]

MIC tends toward zero for independent data

MIC for x and y random draws of size N and N(0, sd).
N 10 1 0.1 0.01
100 0.251 0.263 0.228 0.255
500 0.166 0.146 0.150 0.160
1000 0.144 0.137 0.133 0.144
2500 0.097 0.095 0.101 0.101
5000 0.084 0.078 0.082 0.079
10000 0.064 0.065 0.062 0.063
20000 0.050 0.046 0.046 0.045
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Statistics: Nonlinear Relationships

Pearson and Spearman Distributions
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Less Noisy Patterns
Means.

pattern pearson spearman hoeffd dcor MIC
wave 0.000 0.000 0.012 0.132 0.988
trapezoid -0.001 -0.001 0.005 0.143 0.196
diamond -0.001 -0.001 0.005 0.151 0.153
quadra 0.000 -0.001 0.098 0.435 0.692
X -0.001 -0.001 0.046 0.283 0.566
circle 0.000 0.000 0.043 0.197 0.560
cluster -0.001 -0.002 0.000 0.022 0.133

Standard deviations.
pattern pearson spearman hoeffd dcor MIC
wave 0.033 0.034 0.001 0.006 0.010
trapezoid 0.027 0.029 0.001 0.010 0.012
diamond 0.020 0.024 0.001 0.007 0.010
quadra 0.039 0.042 0.004 0.008 0.026
X 0.044 0.042 0.002 0.008 0.006
circle 0.022 0.018 0.001 0.005 0.007
cluster 0.008 0.021 0.000 0.004 0.008

Quantiles at the 2.5% and 97.5% levels.
pattern pearson spearman hoeffd dcor MIC
wave [-0.062 0.064] [-0.062 0.068] [0.011 0.014] [0.125 0.148] [0.965 1.000]
trapezoid [-0.053 0.048] [-0.057 0.053] [0.003 0.007] [0.123 0.163] [0.174 0.221]
diamond [-0.040 0.037] [-0.048 0.047] [0.004 0.006] [0.137 0.166] [0.135 0.174]
quadra [-0.074 0.076] [-0.083 0.083] [0.091 0.105] [0.420 0.451] [0.642 0.746]
X [-0.093 0.084] [-0.085 0.077] [0.044 0.050] [0.269 0.299] [0.556 0.578]
circle [-0.043 0.042] [-0.034 0.034] [0.042 0.044] [0.188 0.208] [0.548 0.573]
cluster [-0.017 0.014] [-0.045 0.039] [-0.001 0.000] [0.016 0.030] [0.119 0.149]
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Noisier Patterns
Means.

pattern pearson spearman hoeffd dcor MIC
wave 0.001 0.001 0.007 0.123 0.797
trapezoid -0.001 0.000 0.005 0.143 0.196
diamond 0.000 -0.001 0.005 0.151 0.153
quadra 0.000 0.000 0.020 0.242 0.264
X 0.001 0.001 0.024 0.218 0.431
circle 0.000 0.000 0.020 0.173 0.376
cluster 0.000 0.000 0.000 0.032 0.133

Standard deviations.
pattern pearson spearman hoeffd dcor MIC
wave 0.032 0.032 0.001 0.006 0.024
trapezoid 0.027 0.029 0.001 0.010 0.011
diamond 0.020 0.024 0.001 0.007 0.010
quadra 0.033 0.034 0.002 0.013 0.021
X 0.043 0.042 0.001 0.007 0.011
circle 0.023 0.020 0.001 0.006 0.013
cluster 0.014 0.021 0.000 0.005 0.008

Quantiles at the 2.5% and 97.5% levels.
pattern pearson spearman hoeffd dcor MIC
wave [-0.066 0.062] [-0.063 0.063] [0.006 0.008] [0.116 0.139] [0.750 0.843]
trapezoid [-0.049 0.053] [-0.052 0.054] [0.004 0.007] [0.124 0.162] [0.176 0.219]
diamond [-0.038 0.039] [-0.048 0.049] [0.004 0.006] [0.137 0.166] [0.135 0.173]
quadra [-0.061 0.063] [-0.065 0.066] [0.016 0.025] [0.218 0.268] [0.229 0.307]
X [-0.080 0.084] [-0.078 0.080] [0.022 0.028] [0.204 0.235] [0.409 0.454]
circle [-0.043 0.048] [-0.038 0.042] [0.018 0.021] [0.163 0.185] [0.352 0.403]
cluster [-0.028 0.027] [-0.040 0.041] [-0.001 0.000] [0.023 0.043] [0.120 0.148]
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Additional Information

Some R packages to calculate mutual information (package names
linked):
minet: implements various algorithms for inferring mutual information
networks from data10 10 Via the Bioconductor repository.

infotheo: for continuous variables requires discretization via discretize
function
mpmi: Fast calculation mutual information for comparisons between
all types of variables including continuous vs continuous, continuous vs
discrete and discrete vs discrete.

R package to calculate distance correlation (package names linked):
energy: E-statistics (energy) tests and statistics for comparing distribu-
tions. From Székely and Rizzo, authors of the papers cited.

R package for the HHG measure of association/test; provided by the
cited author. I may come back to this in a future version of this paper.

Commentary for Reshef et al. (2011) at article website.

Some discussion at Andrew Gelman’s blog (1) (2)

Simon and Tibshirani’s comment.

The code I used for this paper was a modification of that available both
at Tibshirani’s website, and code available for the patterns seen at the
Wikipedia entry for the Pearson r.

http://www.bioconductor.org/packages/2.12/bioc/html/minet.html
http://cran.r-project.org/web/packages/infotheo
http://r-forge.r-project.org/projects/mpmi/
http://cran.r-project.org/web/packages/energy/
http://www.math.tau.ac.il/~ruheller/Software.html
http://comments.sciencemag.org/content/10.1126/science.1205438
http://andrewgelman.com/2011/12/16/mr-pearson-meet-mr-mandelbrot-detecting-novel-associations-in-large-data-sets/
http://andrewgelman.com/2012/03/26/further-thoughts-on-nonparametric-correlation-measures/
http://www-stat.stanford.edu/~tibs/reshef/comment.pdf
http://www-stat.stanford.edu/~tibs/reshef/script.R
http://en.wikipedia.org/wiki/File:Correlation_examples2.svg
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