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5 Applications in R

Preface
The purpose of this document is to provide a conceptual introduc-
tion to statistical or machine learning (ML) techniques for those that
might not normally be exposed to such approaches during their typi-
cal required statistical training1. Machine learning2 can be described 1 I generally have in mind social science

researchers but hopefully keep present
the material broadly enough for anyone
that may be interested.
2 Also referred to as applied statistical
learning, statistical engineering, data
science or data mining in other contexts.

as a form of a statistics, often even utilizing well-known and familiar
techniques, that has bit of a different focus than traditional analytical
practice in the social sciences and other disciplines. The key notion is
that flexible, automatic approaches are used to detect patterns within
the data, with a primary focus on making predictions on future data.

If one surveys the number of techniques available in ML without
context, it will surely be overwhelming in terms of the sheer number
of those approaches, as well as the various tweaks and variations of
them. However, the specifics of the techniques are not as important
as more general concepts that would be applicable in most every ML
setting, and indeed, many traditional ones as well. While there will be
examples using the R statistical environment and descriptions of a few
specific approaches, the focus here is more on ideas than application3 3 Indeed, there is evidence that with

large enough samples many techniques
converge to similar performance.

and kept at the conceptual level as much as possible. However, some
applied examples of more common techniques will be provided in
detail.

As for prerequisite knowledge, I will assume a basic familiarity with
regression analyses typically presented to those in applied disciplines,
particularly those of the social sciences. Regarding programming, one
should be at least somewhat familiar with using R and Rstudio, and
either of my introductions here and here will be plenty. Note that I
won’t do as much explaining of the R code as in those introductions,
and in some cases I will be more concerned with getting to a result
than clearly detailing the path to it. Armed with such introductory
knowledge as can be found in those documents, if there are parts of
R code that are unclear one would have the tools to investigate and
discover for themselves the details, which results in more learning
anyway. The latest version of this document is

dated April 16, 2014 (original March
2013).

http://www.nd.edu/~mclark19/learn/Introduction_to_R.pdf
http://www.nd.edu/~mclark19/learn/Introduction_to_R_II.pdf
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Introduction: Explanation &
Prediction
FOR ANY PARTICULAR ANALYSIS CONDUCTED, emphasis can be
placed on understanding the underlying mechanisms which have spe-
cific theoretical underpinnings, versus a focus that dwells more on
performance and, more to the point, future performance. These are not
mutually exclusive goals in the least, and probably most studies con-
tain a little of both in some form or fashion. I will refer to the former
emphasis as that of explanation, and the latter that of prediction.

In studies with a more explanatory focus, traditionally analysis con-
cerns a single data set. For example, one assumes a data generating
distribution for the response, and one evaluates the overall fit of a
single model to the data at hand, e.g. in terms of R-squared, and statis-
tical significance for the various predictors in the model. One assesses
how well the model lines up with the theory that led to the analysis,
and modifies it accordingly, if need be, for future studies to consider.
Some studies may look at predictions for specific, possibly hypothetical
values of the predictors, or examine the particular nature of individual
predictors effects. In many cases, only a single model is considered.
In general though, little attempt is made to explicitly understand how
well the model will do with future data, but we hope to have gained
greater insight as to the underlying mechanisms guiding the response
of interest. Following Breiman (2001), this would be more akin to the
data modeling culture.

For the other type of study focused on prediction, newer techniques
are available that are far more focused on performance, not only for
the current data under examination but for future data the selected
model might be applied to. While still possible, relative predictor im-
portance is less of an issue, and oftentimes there may be no particular
theory to drive the analysis. There may be thousands of input vari-
ables, such that no simple summary would likely be possible anyway.
However, many of the techniques applied in such analyses are quite
powerful, and steps are taken to ensure better results for new data.
Again referencing Breiman (2001), this perspective is more of the algo-
rithmic modeling culture.

While the two approaches are not exclusive, I present two extreme
views of the situation:

To paraphrase provocatively, ’machine learning is statistics minus any
checking of models and assumptions’. ~Brian Ripley, 2004

... the focus in the statistical community on data models has:
Led to irrelevant theory and questionable scientific conclusions.
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Kept statisticians from using more suitable algorithmic models.
Prevented statisticians from working on exciting new problems. ~Leo
Brieman, 2001

Respective departments of computer science and statistics now over-
lap more than ever as more relaxed views seem to prevail today, but
there are potential drawbacks to placing too much emphasis on either
approach historically associated with them. Models that ’just work’
have the potential to be dangerous if they are little understood. Situa-
tions for which much time is spent sorting out details for an ill-fitting
model suffers the converse problem- some (though often perhaps very
little actually) understanding with little pragmatism. While this paper
will focus on more algorithmic approaches, guidance will be provided
with an eye toward their use in situations where the typical data mod-
eling approach would be applied, thereby hopefully shedding some
light on a path toward obtaining the best of both worlds.

Some Terminology

For those used to statistical concepts such as dependent variables,
clustering, and predictors, etc. you will have to get used to some dif-
ferences in terminology4 such as targets, unsupervised learning, and 4 See this for a comparison.

inputs etc. This doesn’t take too much, even if it is somewhat annoying
when one is first starting out. I won’t be too beholden to either in this
paper, and it should be clear from the context what’s being referred to.
Initially I will start off mostly with non-ML terms and note in brackets
it’s ML version to help the orientation along.

Tools You Already Have
ONE THING THAT IS IMPORTANT TO KEEP IN MIND AS YOU BEGIN is
that standard techniques are still available, although we might tweak
them or do more with them. So having a basic background in statistics
is all that is required to get started with machine learning. Again, the
difference between ML and traditional statistical analysis is one more
of focus than method.

The Standard Linear Model

All introductory statistics courses will cover linear regression in great
detail, and it certainly can serve as a starting point here. We can de-
scribe it as follows in matrix notation:

http://stat.stanford.edu/~tibs/stat315a/glossary.pdf
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y = N(µ, σ2)

µ = Xβ

Where y is a normally distributed vector of responses [target] with
mean µ and constant variance σ2. X is a typical model matrix, i.e. a
matrix of predictor variables and in which the first column is a vec-
tor of 1s for the intercept [bias5], and β is the vector of coefficients 5 Yes, you will see ’bias’ refer to an

intercept, and also mean something
entirely different in our discussion of
bias vs. variance.

[weights] corresponding to the intercept and predictors in the model.
What might be given less focus in applied courses however is how

often it won’t be the best tool for the job or even applicable in the form
it is presented. Because of this many applied researchers are still ham-
mering screws with it, even as the explosion of statistical techniques
of the past quarter century has rendered obsolete many current intro-
ductory statistical texts that are written for disciplines. Even so, the
concepts one gains in learning the standard linear model are general-
izable, and even a few modifications of it, while still maintaining the
basic design, can render it still very effective in situations where it is
appropriate.

Typically in fitting [learning] a model we tend to talk about R-
squared and statistical significance of the coefficients for a small
number of predictors. For our purposes, let the focus instead be on
the residual sum of squares6 with an eye towards its reduction and 6 ∑(y− f (x))2 where f (x) is a function

of the model predictors, and in this
context a linear combination of them
(Xβ).

model comparison. We will not have a situation in which we are only
considering one model fit, and so must find one that reduces the sum
of the squared errors but without unnecessary complexity and overfit-
ting, concepts we’ll return to later. Furthermore, we will be much more
concerned with the model fit on new data [generalization].

Logistic Regression

Logistic regression is often used where the response is categorical in
nature, usually with binary outcome in which some event occurs or
does not occur [label]. One could still use the standard linear model
here, but you could end up with nonsensical predictions that fall out-
side the 0-1 range regarding the probability of the event occurring, to
go along with other shortcomings. Furthermore, it is no more effort
nor is any understanding lost in using a logistic regression over the
linear probability model. It is also good to keep logistic regression in
mind as we discuss other classification approaches later on.

Logistic regression is also typically covered in an introduction to
statistics for applied disciplines because of the pervasiveness of binary
responses, or responses that have been made as such7. Like the stan- 7 It is generally a bad idea to discretize

continuous variables, especially the
dependent variable. However contextual
issues, e.g. disease diagnosis, might
warrant it.

dard linear model, just a few modifications can enable one to use it to
provide better performance, particularly with new data. The gist is,
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it is not the case that we have to abandon familiar tools in the move
toward a machine learning perspective.

Expansions of Those Tools

Generalized Linear Models

To begin, logistic regression is a generalized linear model assuming a
binomial distribution for the response and with a logit link function as
follows:

y = Bin(µ, size = 1)
η = g(µ)
η = Xβ

This is the same presentation format as seen with the standard lin-
ear model presented before, except now we have a link function g(.)
and so are dealing with a transformed response. In the case of the
standard linear model, the distribution assumed is the gaussian and
the link function is the identity link, i.e. no transformation is made.
The link function used will depend on the analysis performed, and
while there is choice in the matter, the distributions used have a typi-
cal, or canonical link function8. 8 As another example, for the Poisson

distribution, the typical link function
would be the log(µ)

Generalized linear models expand the standard linear model, which
is a special case of generalized linear model, beyond the gaussian
distribution for the response, and allow for better fitting models of
categorical, count, and skewed response variables. We have also have a
counterpart to the residual sum of squares, though we’ll now refer to it
as the deviance.

Generalized Additive Models

Additive models extend the generalized linear model to incorporate
nonlinear relationships of predictors to the response. We might note it
as follows:

y = f amily(µ, ...)
η = g(µ)
η = Xβ + f (X)

So we have the generalized linear model but also smooth functions
f (X) of one or more predictors. More detail can be found in Wood
(2006) and I provide an introduction here.

Things do start to get fuzzy with GAMs. It becomes more difficult
to obtain statistical inference for the smoothed terms in the model,
and the nonlinearity does not always lend itself to easy interpretation.

http://www.nd.edu/~mclark19/learn/GAMS.pdf
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However really this just means that we have a little more work to get
the desired level of understanding. GAMs can be seen as a segue to-
ward more black box/algorithmic techniques. Compared to some of
those techniques in machine learning, GAMs are notably more inter-
pretable, though perhaps less so than GLMs. Also, part of the estima-
tion process includes regularization and validation in determining the
nature of the smooth function, topics of which we will return later.

The Loss Function
G IVEN A SET OF PREDICTOR VARIABLES X and some response y, we
look for some function f (X) to make predictions of y from those input
variables. We also need a function to penalize errors in prediction- a
loss function, L(Y, f (X)). With chosen loss function, we then find the
model which will minimize loss, generally speaking. We will start with
the familiar and note a couple others that might be used.

Continuous Outcomes

Squared Error

The classic loss function for linear models with continuous response is
the squared error loss function, or the residual sum of squares.

L(Y, f (X)) = ∑(y− f (X))2

Absolute Error

For an approach more robust to extreme observations, we might
choose absolute rather than squared error as follows. In this case,
predictions are a conditional median rather than a conditional mean.

L(Y, f (X)) = ∑ |(y− f (X))|

Negative Log-likelihood

We can also think of our usual likelihood methods learned in a stan-
dard applied statistics course as incorporating a loss function that is
the negative log-likelihood pertaining to the model of interest. If we
assume a normal distribution for the response we can note the loss
function as:

L(Y, f (X)) = n ln σ + ∑ 1
2σ2 (y− f (X))2
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In this case it would converge to the same answer as the squared
error/least squares solution.

R Example

The following provides code that one could use with the optim func-
tion in R to find estimates of regression coefficients (beta) that mini-
mize the squared error. X is a design matrix of our predictor variables
with the first column a vector of 1s in order to estimate the intercept. y
is the continuous variable to be modeled9. 9 Type ?optim at the console for more

detail.
sqerrloss = function(beta, X, y) {

mu = X %*% beta

sum((y - mu)^2)

}

set.seed(123)

X = cbind(1, rnorm(100), rnorm(100))

y = rowSums(X[, -1] + rnorm(100))

out1 = optim(par = c(0, 0, 0), fn = sqerrloss, X = X, y = y)

out2 = lm(y ~ X[, 2] + X[, 3]) # check with lm

rbind(c(out1$par, out1$value), c(coef(out2), sum(resid(out2)^2)))

## (Intercept) X[, 2] X[, 3]

## [1,] 0.2702 0.7336 1.048 351.1

## [2,] 0.2701 0.7337 1.048 351.1

Categorical Outcomes

Here we’ll also look at some loss functions useful in classification prob-
lems. Note that there is not necessary exclusion in loss functions for
continuous vs. categorical outcomes10. 10 For example, we could use minimize

squared errors in the case of classifica-
tion also.

Misclassification

Probably the most straightforward is misclassification, or 0-1 loss. If
we note f as the prediction, and for convenience we assume a [-1,1]
response instead of a [0,1] response:

L(Y, f (X)) = ∑ I(y 6= sign( f ))

In the above, I is the indicator function and so we are summing
misclassifications.

Binomial log-likelihood

L(Y, f (X)) = ∑ log(1 + e−2y f )

The above is in deviance form, but is equivalent to binomial log
likelihood if y is on the 0-1 scale.
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Exponential

Exponential loss is yet another loss function at our disposal.

L(Y, f (X)) = ∑ e−y f

Hinge Loss

A final loss function to consider, typically used with support vector
machines, is the hinge loss function.

L(Y, f (X)) = max(1− y f , 0)

Here negative values of y f are misclassifications, and so correct
classifications do not contribute to the loss. We could also note it as
∑(1− y f )+ , i.e. summing only those positive values of 1− y f .
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Which of these might work best may be specific to the situation, but
the gist is that they penalize negative values (misclassifications) more
heavily and increasingly so the worse the misclassification (except for
misclassification error, which penalizes all misclassifications equally),
with their primary difference in how heavy that penalty is. At right is
a depiction of the loss as a functions above, taken from Hastie et al.
(2009).

Regularization
IT IS IMPORTANT TO NOTE that a model fit to a single data set might
do very well with the data at hand, but then suffer when predicting in-
dependent data 11. Also, oftentimes we are interested in a ’best’ subset 11 In terminology we will discuss further

later, such models might have low bias
but notable variance.

of predictors among a great many, and in this scenario the estimated
coefficients are overly optimistic. This general issue can be improved
by shrinking estimates toward zero, such that some of the performance
in the initial fit is sacrificed for improvement with regard to prediction.

Penalized estimation will provide estimates with some shrinkage,
and we can use it with little additional effort with our common proce-
dures. Concretely, let’s apply this to the standard linear model, where
we are finding estimates of β that minimize the squared error loss.

β̂ = arg min
β

∑ (y− Xβ)2

In words, we’re finding the coefficients that minimize the sum of the
squared residuals. With the approach to regression here we just add a
penalty component to the procedure as follows.
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β̂ = arg min
β

∑ (y− Xβ)2 + λ
p
∑

j=1

∣∣β j
∣∣

In the above equation, λ is our penalty term12 for which larger val- 12 This can be set explicitly or also
estimated via a validation approach. As
we do not know it beforehand, we can
estimate it on a validation data set (not
the test set) and then use the estimated
value when estimating coefficients via
cross-validation with the test set. We will
talk more about validation later.

ues will result in more shrinkage. It’s applied to the L1 or Manhattan
norm of the coefficients, β1, β2...βp, i.e. not including the intercept β0,
and is the sum of their absolute values (commonly referred to as the
lasso13). For generalized linear and additive models, we can conceptu-

13 See Tibshirani (1996) Regression
shrinkage and selection via the lasso.

ally express a penalized likelihood as follows:

lp(β) = l(β)− λ
p
∑

j=1

∣∣β j
∣∣

As we are maximizing the likelihood the penalty is a subtraction,
but nothing inherently different is shown. This basic idea of adding
a penalty term will be applied to all machine learning approaches,
but as shown, we can apply such a tool to classical methods to boost
prediction performance.

It should be noted that we can go about the regularization in differ-
ent ways. For example, using the squared L2 norm results in what is
called ridge regression (a.k.a. Tikhonov regularization)14, and using a 14 Interestingly, the lasso and ridge

regression results can be seen as a
Bayesian approach using a zero mean
Laplace and Normal prior distribution
respectively for the β j.

weighted combination of the lasso and ridge penalties gives us elastic
net regularization.

R Example

In the following example, we take a look at the lasso approach for a
standard linear model. We add the regularization component, with a
fixed penalty λ for demonstration purposes15. However you should 15 As noted previously, in practice λ

would be estimated via some validation
procedure.

insert your own values for λ in the optim line to see how the results
are affected.

sqerrloss_reg = function(beta, X, y, lambda=.1){

mu = X%*%beta

sum((y-mu)^2) + lambda*sum(abs(beta[-1]))

}

out3 = optim(par=c(0,0,0), fn=sqerrloss_reg, X=X, y=y)

rbind(c(out1$par, out1$value),

c(coef(out2),sum(resid(out2)^2)),

c(out3$par, out3$value) )

## (Intercept) X[, 2] X[, 3]

## [1,] 0.2702 0.7336 1.048 351.1

## [2,] 0.2701 0.7337 1.048 351.1

## [3,] 0.2704 0.7328 1.047 351.3

From the above, we can see in this case that the predictor coeffi-
cients have indeed shrunk toward zero slightly while the residual sum
of squares has increased just a tad.
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In general, we can add the same sort of penalty to any number of
models, such as logistic regression, neural net models, recommender
systems etc. The primary goal again is to hopefully increase our ability
to generalize the selected model to new data. Note that the estimates
produced are in fact biased, but we have decreased the variance with
new predictions as a counterbalance, and this brings us to the topic of
the next section.

Bias-Variance Tradeoff
IN MOST OF SCIENCE we are concerned with reducing uncertainty in
our knowledge of some phenomenon. The more we know about the
factors involved or related to some outcome of interest, the better we
can predict that outcome upon the influx of new information. The ini-
tial step is to take the data at hand, and determine how well a model
or set of models fit the data in various fashions. In many applications
however, this part is also more or less the end of the game as well16. 16 I should note that I do not make any

particular claim about the quality of such
analysis. In many situations the cost of
data collection is very high, and for all
the current enamorment with ’big’ data,
a lot of folks will never have access to
big data for their situation (e.g. certain
clinical populations). In these situations
getting new data for which one might
make predictions is extremely difficult.

Unfortunately, such an approach in which we only fit models to one
data set does not give a very good sense of generalization performance,
i.e. the performance we would see with new data. While typically not
reported, most researchers, if they are spending appropriate time with
the data, are actually testing a great many models, for which the ’best’
is then provided in detail in the end report. Without some generaliza-
tion performance check however, such performance is overstated when
it comes to new data.

In the following consider a standard linear model scenario, e.g.
with squared-error loss function and perhaps some regularization,
and a data set in which we split the data in some random fashion into
a training set, for initial model fit, and a test set, which is a separate
and independent data set, to measure generalization performance17. 17 In typical situations there are pa-

rameters specific to some analytical
technique for which one would have
no knowledge and which must be esti-
mated along with the usual parameters
of the standard models. The λ penalty
parameter in regularized regression is
one example of such a tuning parameter.
In the best case scenario, we would also
have a validation set, where we could
determine appropriate values for such
parameters based on performance with
the validation data set, and then assess
generalization performance on the test
set when the final model has been cho-
sen. However, methods are available
to us in which we can approximate the
validation step in other ways.

We note training error as the (average) loss over the training set, and
test error as the (average) prediction error obtained when a model
resulting from the training data is fit to the test data. So in addition to
the previously noted goal of finding the ’best’ model (model selection),
we are interested further in estimating the prediction error with new
data (model performance).

Bias & Variance

Conceptually18, with the standard model Y = f (X) + ε with we can

18 Much of the following is essentially
a paraphrase of parts of Hastie et al.
(2009, Chap. 2 & 7).

think of the expected prediction error at a specific input X = x0 as:

Errorx0 = Irreducible Error + Bias2 + Variance
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In other words, we have three components to our general notion of
prediction error:

σ2
ε An initial variance of the target around the true mean f (x0) (un-

avoidable).

Bias2 the amount the average of our estimate varies from the true
mean.

Variance the variance of the target value about its mean.

Slightly more formally, we can present this as follows, with h0 our
estimated (hypothesized) value:

Errorx0 = Var(ε) + (E[h0]− f (x0))
2 + Var(h0)

The Tradeoff

Outlining a general procedure, we start by noting the prediction error
on a training data set with multiple models of varying complexity (e.g.
increasing the number of predictor variables), and then assess the
performance of the chosen models in terms of prediction error on the
test set. We then perform the same activity for a total of 100 simulated
data sets, for each level of complexity.
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The results from this process might look like the image to the right
taken from Hastie et al. (2009). With regard to the training data, we
have errortrain for one hundred training sets for each level of model
complexity. The bold blue line notes this average error over the 100
sets by model complexity. The bold red line the average test error
(errortest) across the 100 test data sets.

Ideally we’d like to see low bias and variance, but things are not
so easy. One thing we can see clearly is that errortrain is not a good
estimate of errortest, which is now our focus in terms of performance. If
we think of the training error as what we would see in typical research
where one does everything with a single data set, we are using the
same data set to fit the model and assess error. As the model is adapted
to that data set specifically, it will be overly optimistic in the estimate
of the error, that optimism being the difference between the error
rate we see based on the training data versus the average of what we
would get with many test data sets. We can think of this as a problem
of overfitting to the training data. Models that do not incorporate any
regularization or validation process of any kind are likely overfit to the
data presented.

Generally speaking, the more complex the model, the lower the
bias, but the higher the variance, as depicted in the graphic. Specifi-
cally however, the situation is more nuanced, where type of problem
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(classification with 0-1 loss vs. continuous response with squared error
loss19) and technique (a standard linear model vs. regularized fit) will 19 See Friedman (1996) On Bias, Vari-

ance, 0/1 Loss and the Curse of Dimen-
sionality for the unusal situations that
can arise in dealing with classification
error with regard to bias and variance.

exhibit different bias-variance relationships.

Diagnosing Bias-Variance Issues & Possible Solutions

Let’s assume a regularized linear model with a standard data split into
training and test sets. We will describe different scenarios with possible
solutions.
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Figure adapted from Domingos (2012).

Worst Case Scenario

Starting with the worst case scenario, poor models may exhibit high
bias and high variance. One thing that will not help this situation (per-
haps contrary to intuition) is adding more data, i.e. increasing N. You
can’t make a silk purse out of a sow’s ear (usually20), and adding more

20 https://libraries.mit.edu/

archives/exhibits/purse/
data just gives you a more accurate picture of how awful your model
is. One might need to rework the model, e.g. adding new predictors
or creating them via interaction terms, polynomials, or other smooth
functions as in additive models, or simply collecting better and/or
more relevant data.
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Figure inspired by Murphy (2012, figure
6.5) showing the bias-variance tradeoff.
Sample (left) and average (right) fits of
linear regression using a gaussian radial
basis function expansion. The green line
represents the true relationship. The
top row shows low variance between
one fit and the next (left) but notable
bias (right) in that the average fit is off.
Compare to the less regularized (high
variance, low bias) situation of the
bottom row. See the kernlab package for
the fitting function used.

High Variance

When variance is a problem, our training error is low while test error is
relatively high (overfitting problem). Implementing more shrinkage or
other penalization to model complexity may help with the issue. In this
case more data may help as well.

High Bias

With bias issues our training error is high and test error is not too
different from training error (underfitting problem). Adding new pre-
dictors/features, interaction terms, polynomials etc. can help here.
Additionally reducing the penalty parameter λ would also work with
even less effort, though generally it should be estimated rather than
explicitly set.

Cross-Validation
As noted in the previous section, in machine learning approaches we
are particularly concerned with prediction error on new data. The sim-
plest validation approach would be to split the data available into a

https://libraries.mit.edu/archives/exhibits/purse/
https://libraries.mit.edu/archives/exhibits/purse/
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training and test set as discussed previously. We estimate the model
on the training data, and apply the model to the test data, get the pre-
dictions and measure our test error, selecting whichever model results
in the least test error. A hypothetical learning curve display the results
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of such a process is shown to the right. While fairly simple, other ap-
proaches are more commonly used and result in better estimates of
performance21.

21 Along with some of the other works
cited, see Harrell (2001) for a good
discussion of model validation.

Adding Another Validation Set

One technique that might be utilized for larger data sets, is to split
the data into training, validation and final test sets. For example, one
might take the original data and create something like a 60-20-20%
split to create the needed data sets. The purpose of the initial vali-
dation set is to select the optimal model and determine the values of
tuning parameters. These are parameters which generally deal with
how complex a model one will allow, but for which one would have
little inkling as to what they should be set at before hand (e.g. our λ

shrinkage parameter). We select models/tuning parameters that min-
imize the validation set error, and once the model is chosen examine
test set error performance. In this way performance assessment is still
independent of the model development process.

K-fold Cross-Validation

TrainTestTrain

TestTrainTrain

TrainTrainTest

Partition 1 Partition 3Partition 2

Iteration 1

Iteration 2

Iteration 3

An illustration of 3-fold classification.

In many cases we don’t have enough data for such a split, and the
split percentages are arbitrary anyway and results would be specific
to the specific split chosen. Instead we can take a typical data set and
randomly split it into κ = 10 equal-sized (or close to it) parts. Take
the first nine partitions and use them as the training set. With chosen
model, make predictions on the test set. Now do the same but this time
use the 9th partition as the holdout set. Repeat the process until each
of the initial 10 partitions of data have been used as the test set. Aver-
age the error across all procedures for our estimate of prediction error.
With enough data, this (and the following methods) could be used as
the validation procedure before eventual performance assessment on
an independent test set with the final chosen model.

Leave-one-out Cross-Validation

Leave-one-out (LOO) cross-validation is pretty much the same thing
but where κ = N. In other words, we train a model for all observations
except the κth one, assessing fit on the observation that was left out.
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We then cycle through until all observations have been left out once to
obtain an average accuracy.

Of the two, K-fold may have relatively higher bias but less vari-
ance, while LOO would have the converse problem, as well as possible
computational issues22. K-fold’s additional bias would be diminished 22 For squared-error loss situations, there

is a Generalized cross-validation (GCV)
that can be estimated more directly
without actually going to the entire LOO
procedure, and functions similarly to
AIC.

would with increasing sample sizes, and generally 5 or 10-fold cross-
validation is recommended.

Bootstrap

With a bootstrap approach, we draw B random samples with replace-
ment from our original data set, creating B bootstrapped data sets of
the same size as the original data. We use the B data sets as training
sets and, using the original data as the test set, average the prediction
error across the models.

Other Stuff

Along with the above there are variations such as repeated cross vali-
dation, the ’.632’ bootstrap and so forth. One would want to do a bit of
investigating, but κ-fold and bootstrap approaches generally perform
well. If variable selection is part of the goal, one should be selecting
subsets of predictors as part of the cross-validation process, not at
some initial data step.

Model Assessment & Selection
IN TYPICAL MODEL COMPARISON within the standard linear model
framework, there are a number of ways in which we might assess
performance across competing models. For standard OLS regression
we might examine adjusted-R2, or with the generalized linear models
we might pick a model with the lowest AIC23. As we have already 23 In situations where it is appropriate to

calculate in the first place, AIC can often
compare to the bootstrap and k-fold
cross-validation approaches.

discussed, in the machine learning context we are interested in models
that reduce e.g. squared error loss (regression) or misclassification
error (classification). However in dealing with many models some
differences in performance may be arbitrary.

Beyond Classification Accuracy: Other Measures of Performance

In typical classification situations we are interested in overall accuracy.
However there are situations, not uncommon, in which simple accu-
racy isn’t a good measure of performance. As an example, consider
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the prediction of the occurrence of a rare disease. Guessing a non-
event every time might result in 99.9% accuracy, but that isn’t how we
would prefer to go about assessing some classifier’s performance. To
demonstrate other sources of classification information, we will use the
following 2x2 table that shows values of some binary outcome (0 =
non-event, 1 = event occurs) to the predictions made by some model
for that response (arbitrary model). Both a table of actual values, often
called a confusion matrix24, and an abstract version are provided. 24 This term has always struck me as

highly sub-optimal.

Actual
1 0

Predicted 1 41 21
0 16 13

Actual
1 0

Predicted 1 A B
0 C D

True Positive, False Positive, True Negative, False Negative Above, these are A, B,
D, and C respectively.

Accuracy Number of correct classifications out of all predictions ((A+D)/Total).
In the above example this would be (41+13)/91, about 59%.

Error Rate 1 - Accuracy.

Sensitivity is the proportion of correctly predicted positives to all true positive
events: A/(A+C). In the above example this would be 41/57, about 72%.
High sensitivity would suggest a low type II error rate (see below), or high
statistical power. Also known as true positive rate.

Specificity is the proportion of correctly predicted negatives to all true negative
events: D/(B+D). In the above example this would be 13/34, about 38%.
High specificity would suggest a low type I error rate (see below). Also
known as true negative rate.

Postive Predictive Value (PPV) proportion of true positives of those that are
predicted positives: A/A+B. In the above example this would be 41/62,
about 66%.

Negative Predictive Value (NPV) proportion of true negatives of those that are
predicted negative: D/C+D. In the above example this would be 13/29,
about 45%.

Precision See PPV.

Recall See sensitivity.

Lift Ratio of positive predictions given actual positives to the proportion of
positive predictions out of the total: (A/(A+C))/((A+B)/Total). In the
above example this would be (41/(41+16))/((41+21)/(91)), or 1.05.

F Score (F1 score) Harmonic mean of precision and recall: 2*(Precision*Recall)/(Precision+Recall).
In the above example this would be 2*(.66*.72)/(.66+.72), about .69.

Type I Error Rate (false positive rate) proportion of true negatives that are
incorrectly predicted positive: B/B+D. In the above example this would be
21/34, about 62%. Also known as alpha.

Type II Error Rate (false negative rate) proportion of true positives that are
incorrectly predicted negative: C/C+A. In the above example this would be
16/57, about 28%. Also known as beta.
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False Discovery Rate proportion of false positives among all positive predic-
tions: B/A+B. In the above example this would be 21/62, about 34%.
Often used in multiple comparison testing in the context of ANOVA.

Phi coefficient A measure of association: (A*D - B*C)/(sqrt((A+C)*(D+B)*(A+B)*(D+C))).
In the above example this would be .11.

Note the following summary of several measures where N+ and
N− are the total true positive values and total true negative values
respectively, and T+, F+, T− and F− are true positive, false positive,
etc.25: 25 Table based on table 5.3 in Murphy

(2012)
Actual
1 0

Predicted 1 T+/N+ = TPR = sensitivity = recall F+/N− = FPR = Type I
0 F−/N+ = FNR = Type II T−/N− = TNR = specificity

There are many other measures such as area under a Receiver Op-
erating Curve (ROC), odds ratio, and even more names for some of
the above. The gist is that given any particular situation you might be
interested in one or several of them, and it would generally be a good
idea to look at a few.

Process Overview
DESPITE THE FACADE OF A POLISHED PRODUCT one finds in pub-
lished research, most of the approach with the statistical analysis
of data is full of data preparation, starts and stops, debugging, re-
analysis, tweaking and fine-tuning etc. Statistical learning is no differ-
ent in this sense. Before we begin with explicit examples, it might be
best to give a general overview of the path we’ll take.

Data Preparation

As with any typical statistical project, probably most of the time will be
spent preparing the data for analysis. Data is never ready to analyze
right away, and careful checks must be made in order to ensure the
integrity of the information. This would include correcting errors of
entry, noting extreme values, possibly imputing missing data and so
forth. In addition to these typical activities, we will discuss a couple
more things to think about during this initial data examination when
engaged in machine learning.

Define Data and Data Partitions

As we have noted previously, ideally we will have enough data to cre-
ate a hold-out, test, or validation data set. This would be some random
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partition of the data such that we could safely conclude that the data
in the test set comes from the same population as the training set. The
training set is used to fit the initial models at various tuning parameter
settings, with a ’best’ model being that which satisfies some criterion
on the validation set (or via a general validation process). With final
model and parameters chosen, generalization error will be assessed
with the the performance of the final model on the test data.

Feature Scaling

Even with standard regression modeling, centering continuous vari-
ables (subtracting the mean) is a good idea so that intercepts and zero
points in general are meaningful. Standardizing variables so that they
have similar variances or ranges will help some procedures find their
minimums faster. Another common transformation is min-max nor-
malization26, which will transfer a scale to a new one of some chosen 26 scorenew = scoreold−minold

maxold−minold
(maxnew −

minnew) + minnewminimum and maximum. Note that whatever approach is done, it must
be done after any explicit separation of data. So if you have separate
training and test sets, they should be scaled separately.

Feature Engineering

If we’re lucky we’ll have ideas on potential combinations or other
transformations of the predictors we have available. For example, in
typical social science research there are two-way interactions one is
often predisposed to try, or perhaps one can sum multiple items to a
single scale score that may be more relevant. Another common tech-
nique is to use a dimension reduction scheme such as principal compo-
nents, but this can (and probably should) actually be an implemented
algorithm in the ML process27. 27 For example, via principal components

or partial least squares regression.One can implement a variety of such approaches in ML as well to
create additional potentially relevant features, even automatically,
but as a reminder, a key concern is overfitting, and doing broad con-
struction of this sort with no contextual guidance would potentially be
prone to such a pitfall. In other cases it may simply be not worth the
time expense.

Discretization

While there may be some contextual exceptions to the rule, it is
generally a pretty bad idea in standard statistical modeling to dis-
cretize/categorize continuous variables28. However some ML proce- 28 See Harrell (2001) for a good sum-

mary of reasons why not to.dures will work better (or just faster) if dealing with discrete valued
predictors rather than continuous. Others even require them; for exam-
ple, logic regression needs binary input. While one could pick arbitrary
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intervals and cutpoints in an unsupervised fashion such as picking
equal range bins or equal frequency bins, there are supervised algo-
rithmic approaches that will use the information in the data to produce
some ’optimal’ discretization.

It’s generally not a good idea to force things in data analysis, and
given that a lot of data situations will be highly mixed, it seems easier
to simply apply some scaling to preserve the inherent relationships
in the data. Again though, if one has only a relative few continuous
variables or a context in which it makes sense to, it’s probably better to
leave continuous variables as such.

Model Selection

With data prepared and ready to analyze, one can use a validation
process to come up with a viable model. Use an optimization proce-
dure or a simple grid search over a set of specific values to examine
models at different tuning parameters. Perhaps make a finer search
once an initial range of good performing values is found, though one
should not split hairs over arbitrarily close performance. Select a ’best’
model given some criterion such as overall accuracy, or if concerned
about over fitting, select the simplest model within one standard error
of the accuracy of the best, or perhaps the simplest within X% of the
best model. For highly skewed classes, one might need to use a differ-
ent measure of performance besides accuracy. If one has a great many
predictor variables, one may use the model selection process to select
features that are ’most important’.

Model Assessment

With tuning parameters/features chosen, we then examine perfor-
mance on the independent test set (or via some validation procedure).
For classification problems, consider other statistics besides accuracy
as measures of performance, especially if classes are unbalanced. Con-
sider other analytical techniques that are applicable and compare
performance among the different approaches. One can even combine
disparate models’ predictions to possibly create an even better classi-
fier29. 29 The topic of ensembles is briefly noted

later.

Opening the Black Box
IT ’S NOW TIME TO SEE SOME OF THIS IN ACTION. In the following
we will try a variety of techniques so as to get a better feel for the sorts
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of things we might try out.

The Dataset

We will use the wine data set from the UCI Machine Learning data
repository. The goal is to predict wine quality, of which there are 7 val-
ues (integers 3-9). We will turn this into a binary classification task to
predict whether a wine is ’good’ or not, which is arbitrarily chosen as
6 or higher. After getting the hang of things one might redo the anal-
ysis as a multiclass problem or even toy with regression approaches,
just note there are very few 3s or 9s so you really only have 5 values
to work with. The original data along with detailed description can
be found here, but aside from quality it contains predictors such as
residual sugar, alcohol content, acidity and other characteristics of the
wine30. 30 I think it would be interesting to have

included characteristics of the people
giving the rating.

The original data is separated into white and red data sets. I have
combined them and created additional variables: color and its nu-
meric version white indicating white or red, and good, indicating scores
greater than or equal to 6 (denoted as ’Good’). The following will show
some basic numeric information about the data.

wine = read.csv("http://www.nd.edu/~mclark19/learn/data/goodwine.csv")

summary(wine)

## fixed.acidity volatile.acidity citric.acid residual.sugar

## Min. : 3.80 Min. :0.08 Min. :0.000 Min. : 0.60

## 1st Qu.: 6.40 1st Qu.:0.23 1st Qu.:0.250 1st Qu.: 1.80

## Median : 7.00 Median :0.29 Median :0.310 Median : 3.00

## Mean : 7.21 Mean :0.34 Mean :0.319 Mean : 5.44

## 3rd Qu.: 7.70 3rd Qu.:0.40 3rd Qu.:0.390 3rd Qu.: 8.10

## Max. :15.90 Max. :1.58 Max. :1.660 Max. :65.80

## chlorides free.sulfur.dioxide total.sulfur.dioxide density

## Min. :0.009 Min. : 1.0 Min. : 6 Min. :0.987

## 1st Qu.:0.038 1st Qu.: 17.0 1st Qu.: 77 1st Qu.:0.992

## Median :0.047 Median : 29.0 Median :118 Median :0.995

## Mean :0.056 Mean : 30.5 Mean :116 Mean :0.995

## 3rd Qu.:0.065 3rd Qu.: 41.0 3rd Qu.:156 3rd Qu.:0.997

## Max. :0.611 Max. :289.0 Max. :440 Max. :1.039

## pH sulphates alcohol quality color

## Min. :2.72 Min. :0.220 Min. : 8.0 Min. :3.00 red :1599

## 1st Qu.:3.11 1st Qu.:0.430 1st Qu.: 9.5 1st Qu.:5.00 white:4898

## Median :3.21 Median :0.510 Median :10.3 Median :6.00

## Mean :3.22 Mean :0.531 Mean :10.5 Mean :5.82

## 3rd Qu.:3.32 3rd Qu.:0.600 3rd Qu.:11.3 3rd Qu.:6.00

## Max. :4.01 Max. :2.000 Max. :14.9 Max. :9.00

## white good

## Min. :0.000 Bad :2384

## 1st Qu.:1.000 Good:4113

## Median :1.000

## Mean :0.754

## 3rd Qu.:1.000

## Max. :1.000

http://archive.ics.uci.edu/ml/datasets/Wine+Quality


Machine Learning 24

R Implementation

I will use the caret package in R. Caret makes implementation of val-
idation, data partitioning, performance assessment, and prediction
and other procedures about as easy as it can be in this environment.
However, caret is mostly using other R packages31 that have more 31 In the following, the associated

packages and functions used are:

caret knn

nnet nnet

randomForest randomForest

kernlab ksvm

information about the specific functions underlying the process, and
those should be investigated for additional information. Check out
the caret home page for more detail. The methods selected here were
chosen for breadth of approach, to give a good sense of the variety of
techniques available.

In addition to caret, it’s a good idea to use your computer’s re-
sources as much as possible, or some of these procedures may take
a notably long time, and more so with the more data you have. Caret
will do this behind the scenes, but you first need to set things up. Say,
for example, you have a quad core processor, meaning your processor
has four cores essentially acting as independent CPUs. You can set up R
for parallel processing with the following code, which will allow caret
to allot tasks to three cores simultaneously32. 32 You typically want to leave at least one

core free so you can do other things.
library(doSNOW)

registerDoSNOW(makeCluster(3, type = "SOCK"))

Feature Selection & The Data Partition

This data set is large enough to leave a holdout sample, allowing us
to initially search for the best of a given modeling approach over a
grid of tuning parameters specific to the technique. To iterate previous
discussion, we don’t want test performance contaminated with the
tuning process. With the best model at t tuning parameter(s), we will
assess performance with prediction on the holdout set.
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I also made some decisions to deal with the notable collinearity in
the data, which can severely hamper some methods. We can look at
the simple correlation matrix to start

library(corrplot)

corrplot(cor(wine[, -c(13, 15)]), method = "number", tl.cex = 0.5)

I ran regressions to examine the r-squared for each predictor in a
model as if it were the dependent variable predicted by the other input
variables. The highest was for density at over 96%, and further inves-
tigation suggested color and either sulfur dioxide are largely captured
by the other variables already also. These will not be considered in the
following models.

Caret has its own partitioning function we can use here to separate
the data into training and test data. There are 6497 total observations

http://caret.r-forge.r-project.org/
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of which I will put 80% into the training set. The function createData-
Partition will produce indices to use as the training set. In addition to
this, we will normalize the continuous variables to the [0,1] range. For
the training data set, this will be done as part of the training process,
so that any subsets under consideration are scaled separately, but for
the test set we will go ahead and do it now.

library(caret)

set.seed(1234) #so that the indices will be the same when re-run

trainIndices = createDataPartition(wine$good, p = 0.8, list = F)

wanted = !colnames(wine) %in% c("free.sulfur.dioxide", "density", "quality",

"color", "white")

wine_train = wine[trainIndices, wanted] #remove quality and color, as well as density and others

wine_test = wine[-trainIndices, wanted]

Feature
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0.4

0.6

0.8

1.0

No Yes

alcohol
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chlorides
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citric.acid
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fixed.acidity
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pH

residual.sugar sulphates total.sulfur.dioxide
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volatile.acidity

Let’s take an initial peek at how the predictors separate on the tar-
get. In the following I’m ’predicting’ the pre-possessed data so as to
get the transformed data. Again, we’ll leave the preprocessing to the
training part, but here it will put them on the same scale for visual
display.

wine_trainplot = predict(preProcess(wine_train[,-10], method="range"),

wine_train[,-10])

featurePlot(wine_trainplot, wine_train$good, "box")

For the training set, it looks like alcohol content, volatile acidity and
chlorides separate most with regard to good classification. While this
might give us some food for thought, note that the figure does not give
insight into interaction effects, which methods such as trees will get at.

k-nearest Neighbors

Consider the typical distance matrix33 that is often used for cluster 33 See, for example, the function dist in
R.analysis of observations34. If we choose something like Euclidean dis-
34 Often referred to as unsupervised
learning as there is not target/dependent
variable.

tance as a metric, each point in the matrix gives the value of how far an
observation is from some other, given their respective values on a set of
variables.

K-nearest neighbors approaches exploit this information for pre-
dictive purposes. Let us take a classification example, and k = 5
neighbors. For a given observation xi, find the 5 closest neighbors in
terms of Euclidean distance based on the predictor variables. The class
that is predicted is whatever class the majority of the neighbors are la-
beled as35. For continuous outcomes we might take the mean of those 35 See the knn.ani function in the anima-

tion package for a visual demonstrationneighbors as the prediction.
So how many neighbors would work best? This is an example of

a tuning parameter, i.e. k, for which we have no knowledge about its
value without doing some initial digging. As such we will select the
tuning parameter as part of the validation process.
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The caret package provides several techniques for validation such as
k-fold, bootstrap, leave-one-out and others. We will use 10-fold cross
validation. We will also set up a set of values for k to try out36. 36 For whatever tuning parameters are

sought, the train function will expect a
dataframe with a ’.’ before the parameter
name as the column name. Note also
you can just specify a tuning length
instead. See the help file for the train
function.

set.seed(1234)

cv_opts = trainControl(method="cv", number=10)

knn_opts = data.frame(.k=c(seq(3, 11, 2), 25, 51, 101)) #odd to avoid ties

results_knn = train(good~., data=wine_train, method="knn",

preProcess="range", trControl=cv_opts,

tuneGrid = knn_opts)

results_knn

## k-Nearest Neighbors

##

## 5199 samples

## 9 predictors

## 2 classes: 'Bad', 'Good'

##

## Pre-processing: re-scaling to [0, 1]

## Resampling: Cross-Validated (10 fold)

##

## Summary of sample sizes: 4679, 4679, 4680, 4679, 4679, 4679, ...

##

## Resampling results across tuning parameters:

##

## k Accuracy Kappa Accuracy SD Kappa SD

## 3 0.8 0.5 0.02 0.04

## 5 0.7 0.4 0.01 0.03

## 7 0.7 0.4 0.02 0.04

## 9 0.7 0.4 0.01 0.04

## 10 0.7 0.4 0.02 0.04

## 20 0.7 0.4 0.02 0.04

## 50 0.7 0.4 0.02 0.04

## 100 0.7 0.4 0.02 0.04

##

## Accuracy was used to select the optimal model using the largest value.

## The final value used for the model was k = 3.

For some reason here and beyond, the
creation of this document rounds the
results of caret’s train, and changing
various options doesn’t do anything.
When you run it yourself you should see
a range of slightly different values, e.g.
between .75 and .77.

In this case it looks like choosing the nearest five neighbors (k =

3) works best in terms of accuracy. Additional information regards the
variability in the estimate of accuracy, as well as kappa, which can be
seen as a measure of agreement between predictions and true values.
Now that k is chosen, let’s see how well the model performs on the test
set.

preds_knn = predict(results_knn, wine_test[,-10])

confusionMatrix(preds_knn, wine_test[,10], positive='Good')

## Confusion Matrix and Statistics

##

## Reference

## Prediction Bad Good

## Bad 285 162

## Good 191 660

##

## Accuracy : 0.728

## 95% CI : (0.703, 0.752)
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## No Information Rate : 0.633

## P-Value [Acc > NIR] : 2.76e-13

##

## Kappa : 0.407

## Mcnemar's Test P-Value : 0.136

##

## Sensitivity : 0.803

## Specificity : 0.599

## Pos Pred Value : 0.776

## Neg Pred Value : 0.638

## Prevalence : 0.633

## Detection Rate : 0.508

## Detection Prevalence : 0.656

## Balanced Accuracy : 0.701

##

## 'Positive' Class : Good

##

We get a lot of information here, but to focus on accuracy, we get
around 72.8%. The lower bound (and p-value) suggests we are statisti-
cally predicting better than the no information rate (i.e., just guessing
the more prevalent ’not good’ category), and sensitivity and positive
predictive power are good, though at the cost of being able to distin-
guish bad wine. Perhaps the other approaches will have more success,
but note that the caret package does have the means to focus on other
metrics such as sensitivity during the training process which might
help. Also feature combination or other avenues might help improve
the results as well.

Additional information reflects the importance of predictors. For
most methods accessed by caret, the default variable importance met-
ric regards the area under the curve or AUC from a ROC analysis with
regard to each predictor, and is model independent. This is then nor-
malized so that the least important is 0 and most important is 100.
Another thing one could do would require more work, as caret doesn’t
provide this, but a simple loop could still automate the process. For
a given predictor x, re-run the model without x, and note the de-
crease (or increase for poor variables) in accuracy that results. One
can then rank order those results. I did so with this problem and no-
tice that only alcohol content and volatile acidity were even useful for
this model. K nearest-neighbors is susceptible to irrelevant informa-
tion (you’re essentially determining neighbors on variables that don’t
matter), and one can see this in that, if only those two predictors are
retained, test accuracy is the same (actually a slight increase).

Importance

residual.sugar

sulphates

pH

total.sulfur.dioxide

citric.acid

fixed.acidity

chlorides

volatile.acidity

alcohol

0 20 40 60 80 100

dotPlot(varImp(results_knn))

Strengths & Weaknesses

Strengths37

37 See table 10.1 in Hastie et al. (2009)
for a more comprehensive list for this
and the other methods discussed in this
section.
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Intuitive approach.

Robust to outliers on the predictors.

Weaknesses

Susceptible to irrelevant features.

Susceptible to correlated inputs.

Ability to handle data of mixed types.

Big data. Though approaches are available that help in this regard.

Neural Nets

Input Layer Hidden Layer Output

Neural nets have been around for a long while as a general concept
in artificial intelligence and even as a machine learning algorithm,
and often work quite well. In some sense they can be thought of as
nonlinear regression. Visually however, we can see them as layers of
inputs and outputs. Weighted combinations of the inputs are created
and put through some function (e.g. the sigmoid function) to produce
the next layer of inputs. This next layer goes through the same process
to produce either another layer or to predict the output, which is the
final layer38. All the layers between the input and output are usually

38 There can be many output variables in
this approach.referred to as ’hidden’ layers. If there were no hidden layers then it

becomes the standard regression problem.
One of the issues with neural nets is determining how many hidden

layers and how many hidden units in a layer. Overly complex neural
nets will suffer from high variance will thus be less generalizable, par-
ticularly if there is less relevant information in the training data. Along
with the complexity is the notion of weight decay, however this is the
same as the regularization function we discussed in a previous section,
where a penalty term would be applied to a norm of the weights.

A comment about the following: if you are not set up for utilizing
multiple processors the following might be relatively slow. You can
replace the method with ”nnet” and shorten the tuneLength to 3 which
will be faster without much loss of accuracy. Also, the function we’re
using has only one hidden layer, but the other neural net methods
accessible via the caret package may allow for more, though the gains
in prediction with additional layers are likely to be modest relative
to complexity and computational cost. In addition, if the underlying
function39 has additional arguments, you may pass those on in the 39 For this example, ultimately the

primary function is nnet in the nnet
package

train function itself. Here I am increasing the ’maxit’, or maximum
iterations, argument.
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results_nnet = train(good~., data=wine_train, method="avNNet",

trControl=cv_opts, preProcess="range",

tuneLength=5, trace=F, maxit=1000)

results_nnet

## Model Averaged Neural Network

##

## 5199 samples

## 9 predictors

## 2 classes: 'Bad', 'Good'

##

## Pre-processing: re-scaling to [0, 1]

## Resampling: Cross-Validated (10 fold)

##

## Summary of sample sizes: 4679, 4679, 4680, 4679, 4679, 4679, ...

##

## Resampling results across tuning parameters:

##

## size decay Accuracy Kappa Accuracy SD Kappa SD

## 1 0 0.7 0.4 0.02 0.04

## 1 1e-04 0.7 0.4 0.02 0.04

## 1 0.001 0.7 0.4 0.02 0.04

## 1 0.01 0.7 0.4 0.02 0.04

## 1 0.1 0.7 0.4 0.02 0.04

## 3 0 0.8 0.5 0.02 0.04

## 3 1e-04 0.8 0.5 0.02 0.04

## 3 0.001 0.8 0.5 0.02 0.04

## 3 0.01 0.8 0.5 0.01 0.03

## 3 0.1 0.8 0.5 0.01 0.03

## 5 0 0.8 0.5 0.02 0.05

## 5 1e-04 0.8 0.5 0.01 0.03

## 5 0.001 0.8 0.5 0.02 0.04

## 5 0.01 0.8 0.5 0.02 0.04

## 5 0.1 0.8 0.5 0.01 0.03

## 7 0 0.8 0.5 0.02 0.04

## 7 1e-04 0.8 0.5 0.02 0.04

## 7 0.001 0.8 0.5 0.01 0.03

## 7 0.01 0.8 0.5 0.01 0.03

## 7 0.1 0.8 0.5 0.01 0.03

## 9 0 0.8 0.5 0.02 0.05

## 9 1e-04 0.8 0.5 0.01 0.03

## 9 0.001 0.8 0.5 0.01 0.03

## 9 0.01 0.8 0.5 0.01 0.03

## 9 0.1 0.8 0.5 0.01 0.03

##

## Tuning parameter 'bag' was held constant at a value of FALSE

## Accuracy was used to select the optimal model using the largest value.

## The final values used for the model were size = 9, decay = 0 and bag

## = FALSE.

We see that the best model has hidden layer nodes and a decay pa-
rameter of . Typically you might think of how many hidden units you
want to examine in terms of the amount of data you have (i.e. esti-
mated parameters to N ratio), and here we have a decent amount. In
this situation you might start with very broad values for the number of
inputs (e.g. a sequence by 10s) and then narrow your focus (e.g. be-
tween 20 and 30), but with at least some weight decay you should be
able to avoid overfitting. I was able to get an increase in test accuracy
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of about 1.5% using up to 50 hidden units40. 40 There are some rules of thumb, but
using regularization and cross-validation
is a much better way to ’guess’.preds_nnet = predict(results_nnet, wine_test[,-10])

confusionMatrix(preds_nnet, wine_test[,10], positive='Good')

## Error: could not find function "confusionMatrix"

## Error: could not find function "confusionMatrix"

We note improved prediction with the neural net model relative to
the k-nearest neighbors approach, with increases in accuracy (

Error in eval(expr, envir, enclos) : object ’conf_nnet’

not found%), sensitivity, specificity etc.

Strengths & Weaknesses

Strengths

Good prediction generally.

Incorporating the predictive power of different combinations of
inputs.

Some tolerance to correlated inputs.

Weaknesses

Susceptible to irrelevant features.

Not robust to outliers.

Big data with complex models.

Trees & Forests

Classification and regression trees provide yet another and notably
different approach to prediction. Consider a single input variable and
binary dependent variable. We will search all values of the input to
find a point where, if we partition the data at that point, it will lead to
the best classification accuracy. So for a single variable whose range

X1 >=5.75

X2 < 3
Negative

PositiveNegative

might be 1 to 10, we find that a cut at 5.75 results in the best classifi-
cation if all observations greater than or equal to 5.75 are classified as
positive and the rest negative. This general approach is fairly straight-
forward and conceptually easy to grasp, and it is because of this that
tree approaches are appealing.

Now let’s add a second input, also on a 1 to 10 range. We now
might find that even better classification results if, upon looking at the
portion of data regarding those greater than or equal to 5.75, that we
only classify positive if they are also less than 3 on the second variable.
At right is a hypothetical tree reflecting this.

|alcohol < 10.625

volatile.acidity < 0.2525

alcohol < 9.85
Good

Bad Good

Good

Results from the tree package.
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The example tree here is based on the wine training data set. It is
interpreted as follows. If the alcohol content is greater than 10.63 %,
a wine is classified as good41. For those less than 10.63, if its volatile 41 Color me unsurprised by this finding.

acidity is also less than .25, they are also classified as good, and of
the remaining observations, if they are at least more than 9.85% (i.e.
volatility >.25, alcohol between 9.85 and 10.625), they also get classi-
fied as good. Any remaining observations are classified as bad wines.

Unfortunately a single tree, while highly interpretable, does pretty
poorly for predictive purposes. In standard situations we will instead
use the power of many trees, i.e. a forest, based on repeated sampling
of the original data. So if we create 1000 new training data sets based
on random samples of the original data (each of size N, i.e. a bootstrap
of the original data set), we can run a tree for each, and assess the
predictions each tree would produce for the observations for a hold
out set (or simply those observations which weren’t selected during the
sampling process, the ’out-of-bag’ sample), in which the new data is
’run down the tree’ to obtain predictions. The final class prediction for
an observation is determined by majority vote across all trees.

Random forests are referred to as an ensemble method, one that
is actually a combination of many models, and there are others we’ll
mention later. In addition there are other things to consider, such
as how many variables to make available for consideration at each
split, and this is the tuning parameter of consequence here in our use
of caret (called ’mtry’). In this case we will investigate subsets of 2
through 6 possible predictors. With this value determined via cross-
validation, we can apply the best approach to the hold out test data
set.

There’s a lot going on here to be sure: there is a sampling process
for cross-validation, there is resampling to produce the forest, there is
random selection of mtry predictor variables etc. But we are in the end
just harnessing the power of many trees, any one of which would be
highly interpretable.

set.seed(1234)

rf_opts = data.frame(.mtry=c(2:6))

results_rf = train(good~., data=wine_train, method="rf",

preProcess='range',trControl=cv_opts, tuneGrid=rf_opts,

n.tree=1000)

results_rf

## Random Forest

##

## 5199 samples

## 9 predictors

## 2 classes: 'Bad', 'Good'

##

## Pre-processing: re-scaling to [0, 1]

## Resampling: Cross-Validated (10 fold)

##
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## Summary of sample sizes: 4679, 4679, 4680, 4679, 4679, 4679, ...

##

## Resampling results across tuning parameters:

##

## mtry Accuracy Kappa Accuracy SD Kappa SD

## 2 0.8 0.6 0.02 0.04

## 3 0.8 0.6 0.02 0.04

## 4 0.8 0.6 0.02 0.04

## 5 0.8 0.6 0.02 0.04

## 6 0.8 0.6 0.02 0.03

##

## Accuracy was used to select the optimal model using the largest value.

## The final value used for the model was mtry = 2.

The initial results look promising with mtry = producing the best
initial result. Now for application to the test set.

preds_rf = predict(results_rf, wine_test[,-10])

confusionMatrix(preds_rf, wine_test[,10], positive='Good')

## Confusion Matrix and Statistics

##

## Reference

## Prediction Bad Good

## Bad 335 91

## Good 141 731

##

## Accuracy : 0.821

## 95% CI : (0.799, 0.842)

## No Information Rate : 0.633

## P-Value [Acc > NIR] : <2e-16

##

## Kappa : 0.606

## Mcnemar's Test P-Value : 0.0013

##

## Sensitivity : 0.889

## Specificity : 0.704

## Pos Pred Value : 0.838

## Neg Pred Value : 0.786

## Prevalence : 0.633

## Detection Rate : 0.563

## Detection Prevalence : 0.672

## Balanced Accuracy : 0.797

##

## 'Positive' Class : Good

##

This is our best result so far with 82.13% accuracy, with a lower
bound well beyond the 63% we’d have guessing. Random forests do
not suffer from some of the data specific issues that might be influenc-
ing the other approaches, such as irrelevant and correlated predictors,
and furthermore benefit from the combined information of many mod-
els. Such performance increases are not a given, but random forests
are generally a good method to consider given their flexibility.

Incidentally, the underlying randomForest function here allows one
to assess variable importance in a different manner42, and there are 42 Our previous assessment was model

independent.other functions used by caret that can produce their own metrics also.
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In this case, randomForest can provide importance based on a version
of the ’decrease in inaccuracy’ approach we talked before (as well as
another index known as gini impurity). The same two predictors are
found to be most important and notably more than others- alcohol and
volatile.acidity.

Strengths & Weaknesses

Strengths

A single tree is highly interpretable.

Tolerance to irrelevant features.

Some tolerance to correlated inputs.

Good with big data.

Handling of missing values.
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lab

class1

class2

Weaknesses

Relatively less predictive in many situations.

Cannot work on (linear) combinations of features.

Support Vector Machines

Support Vector Machines (SVM) will be our last example, and is per-
haps the least intuitive. SVMs seek to map the input space to a higher
dimension via a kernel function, and in that transformed feature space,
find a hyperplane that will result in maximal separation of the data.

To better understand this process, consider the example to the right
of two inputs, x and y. Cursory inspection shows no easy separation
between classes. However if we can map the data to a higher dimen-
sion43, shown in the following graph, we might find a more clear sepa-

43 Note that we regularly do this sort of
thing in more mundane circumstances.
For example, we map an Nxp matrix
to an NxN matrix when we compute a
distance matrix for cluster analysis.

ration. Note that there are a number of choices in regard to the kernel
function that does the mapping, but in that higher dimension, the
decision boundary is chosen which will result in maximum distance
(largest margin) between classes (following figures, zoom in to see
the margin on the second plot). Real data will not be so clean cut, and
total separation impossible, but the idea is the same.

class1

class2

class1

class2

set.seed(1234)

results_svm = train(good~., data=wine_train, method="svmLinear",

preProcess="range", trControl=cv_opts, tuneLength=5)

results_svm
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## Support Vector Machines with Linear Kernel

##

## 5199 samples

## 9 predictors

## 2 classes: 'Bad', 'Good'

##

## Pre-processing: re-scaling to [0, 1]

## Resampling: Cross-Validated (10 fold)

##

## Summary of sample sizes: 4679, 4679, 4680, 4679, 4679, 4679, ...

##

## Resampling results

##

## Accuracy Kappa Accuracy SD Kappa SD

## 0.7 0.4 0.02 0.05

##

## Tuning parameter 'C' was held constant at a value of 1

##

preds_svm = predict(results_svm, wine_test[,-10])

confusionMatrix(preds_svm, wine_test[,10], positive='Good')

## Confusion Matrix and Statistics

##

## Reference

## Prediction Bad Good

## Bad 269 123

## Good 207 699

##

## Accuracy : 0.746

## 95% CI : (0.721, 0.769)

## No Information Rate : 0.633

## P-Value [Acc > NIR] : < 2e-16

##

## Kappa : 0.432

## Mcnemar's Test P-Value : 4.9e-06

##

## Sensitivity : 0.850

## Specificity : 0.565

## Pos Pred Value : 0.772

## Neg Pred Value : 0.686

## Prevalence : 0.633

## Detection Rate : 0.539

## Detection Prevalence : 0.698

## Balanced Accuracy : 0.708

##

## 'Positive' Class : Good

##

Results for the initial support vector machine do not match the
random forest for this data set, with accuracy of 74.58%. However, you
might choose a different kernel than the linear one used here, as well
as tinker with other options.

Strengths & Weaknesses

Strengths
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Good prediction in a variety of situations.

Can utilize predictive power of linear combinations of inputs.

Weaknesses

Very black box.

Computational scalability.

Natural handling of mixed data types.

Other
IN THIS SECTION I NOTE SOME OTHER TECHNIQUES one may come
across and others that will provide additional insight into machine
learning applications.

Unsupervised Learning

Unsupervised learning generally speaking involves techniques in which
we are utilizing unlabeled data. In this case we have our typical set of
features we are interested in, but no particular response to map them
to. In this situation we are more interested in the discovery of structure
within the data.

Clustering

Many of the techniques used in unsupervised are commonly taught
in various applied disciplines as various forms of "cluster" analysis.
The gist is we are seeking an unknown class structure rather than
seeing how various inputs relate to a known class structure. Common
techniques include k-means, hierarchical clustering, and model based
approaches (e.g. mixture models).

Latent Variable Models
LV1 LV2

Sometimes the desire is to reduce the dimensionality of the inputs to a
more manageable set of information. In this manner we are thinking
that much of the data can be seen as having only a few sources of
variability, often called latent variables or factors. Again, this takes
familiar forms such as principal components and ("exploratory") factor
analysis, but would also include independence components analysis
and partial least squares techniques. Note also that these can be part
of a supervised technique (e.g. principal components regression) or
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the main focus of analysis (as with latent variable models in structural
equation modeling).

Graphical Structure

Akaka

Alexander

Allard

Baucus

Bayh

Bennett

Biden

Bingaman

Bond

Boxer

Brown

Brownback

Bunning
Burr

Byrd

Cantwell

Cardin

Carper

Casey

Chambliss

Clinton

Coburn

Cochran

Coleman

Collins

Conrad

Corker

Cornyn

Craig
Crapo

DeMint

Dodd

Dole

Domenici

Dorgan

Durbin

Ensign
Enzi

Feingold

Feinstein

Graham

Grassley

Gregg

Hagel

Harkin

Hatch

Hutchison

Inhofe

Inouye

Isakson

Kennedy
Kerry
Klobuchar

Kohl

Kyl

Landrieu

Lautenberg

Leahy

Levin

Lieberman

Lincoln

Lott

Lugar

Martinez

McCain

McCaskill

McConnell

Menendez

Mikulski

Murkowski

Murray
Nelson (FL)

Nelson (NE)

Obama

Pryor

Reed

Reid

Roberts

Rockefeller

Salazar

Sanders

Schumer

Sessions Shelby

Smith

Snowe

Specter

Stabenow

Stevens

Sununu

Tester

Thune

Vitter

Voinovich
Warner

Webb
Whitehouse

Wyden

Example graph of the social network of
senators based on data and filter at the
following link. Node size is based on the
betweeness centrality measure, edge size
the percent agreement (graph filtered to
edges >= 65%). Color is based on the
clustering discovered within the graph.
Zoom in as necessary, and note that you
may need to turn off ’enhance thin lines’
in your Adobe Page Display Preferences
if using it as a viewer. link to data.

Other techniques are available to understand structure among observa-
tions or features. Among the many approaches is the popular network
analysis, where we can obtain similarities among observations and ex-
amine visually the structure of those data points, where observations
are placed closer together that are more similar in nature. In still other
situations, we aren’t so interested in the structure as we are in model-
ing the relationships and making predictions from the correlations of
inputs.

Imputation

We can also use these techniques when we are missing data as a means
to impute the missing values44. While many are familiar with this

44 This and other techniques may fall
under the broad heading of matrix
completion.

problem and standard techniques for dealing with it, it may not be
obvious that ML techniques may also be used. For example, both k-
nearest neighbors and random forest techniques have been applied to
imputation.

Beyond this we can infer values that are otherwise unavailable in a
different sense. Consider Netflix, Amazon and other sites that suggest
various products based on what you already like or are interested in.
In this case the suggested products have missing values for the user
which are imputed or inferred based on their available data and other
consumers similar to them who have rated the product in question.
Such recommender systems are widely used these days.

Ensembles

In many situations we can combine the information of multiple models
to enhance prediction. This can take place within a specific technique,
e.g. random forests, or between models that utilize different tech-
niques. I will discuss some standard techniques, but there are a great
variety of forms in which model combination might take place.

Bagging

Bagging, or bootstrap aggregation, uses bootstrap sampling to create
many data sets on which a procedure is then performed. The final
prediction is based on an average of all the predictions made for each
observation. In general, bagging helps reduce the variance while leav-
ing bias unaffected. A conceptual outline of the procedure is provided.

http://support.google.com/fusiontables/answer/2566732?hl=en&ref_topic=2572801


37 Applications in R

Model Generation
For B number of iterations:

1. Sample N observations with replacement B times to create B data
sets of size N.

2. Apply the learning technique to each of B data sets to create t mod-
els.

3. Store the t results.

Classification
For each of t number of models:

1. Predict the class of N observations of the original data set.

2. Return the class predicted most often.

Boosting

With boosting we take a different approach to refitting models. Con-
sider a classification task in which we start with a basic learner and
apply it to the data of interest. Next the learner is refit, but with more
weight (importance) given to misclassified observations. This process
is repeated until some stopping rule is reached. An example of the
AdaBoost algorithm is provided (in the following I is the indicator
function).

Set initial weights wi to 1/N.

for m = 1 : M {

Fit a classifier m with given weights to the data resulting in
predictions f (m)

i that minimizes some loss function.

Compute the error rate errm =

N
∑

i=1
I(yi 6= f (m)

i )

N
∑

i=1
w(m)

i

Compute αm = log[(1− errm)/errm]

Set wi ← wi exp[αmI(yi 6= f (m)
i )]

}

Return sgn[
M
∑

m=1
αm f (m)]

Boosting can be applied to a variety of tasks and loss functions, and
in general is highly resistant to overfitting.

Stacking

Stacking is a method that can generalize beyond a single fitting tech-
nique, though it can be applied in a fashion similar to boosting for a
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single technique. While the term can refer to a specific technique, here
we will use it broadly to mean any method to combine models of dif-
ferent forms. Consider the four approaches we demonstrated earlier:
k-nearest neighbors, neural net, random forest, and the support vector
machine. We saw that they do not have the same predictive accuracy,
though they weren’t bad in general. Perhaps by combining their re-
spective efforts, we could get even better prediction than using any
particular one.

The issue then how we might combine them. We really don’t have
to get too fancy with it, and can even use a simple voting scheme as in
bagging. For each observation, note the predicted class on new data
across models. The final prediction is the class that receives the most
votes. Another approach would be to use a weighted vote, where the
votes are weighted by their respective accuracies.

Another approach would use the predictions on the test set to cre-
ate a data set of just the predicted probabilities from each learning
scheme. We can then use this data to train a meta-learner using the
test labels as the response. With the final meta-learner chosen, we then
retrain the original models on the entire data set (i.e. including the
test data). In this manner the initial models and the meta-learner are
trained separately and you get to eventually use the entire data set to
train the original models. Now when new data becomes available, you
feed them to the base level learners, get the predictions, and then feed
the predictions to the meta-learner for the final prediction.

Feature Selection & Importance

We hit on this topic some before, but much like there are a variety of
ways to gauge performance, there are different approaches to select
features and/or determine their importance. Invariably feature selec-
tion takes place from the outset when we choose what data to collect
in the first place. Hopefully guided by theory, in other cases it may be
restricted by user input, privacy issues, time constraints and so forth.
But once we obtain the initial data set however, we may still want to
trim the models under consideration.

In standard approaches we might have in the past used forward
or other selection procedure, or perhaps some more explicit model
comparison approach. Concerning the content here, take for instance
the lasso regularization procedure we spoke of earlier. ’Less important’
variables may be shrunk entirely to zero, and thus feature selection is
an inherent part of the process, and is useful in the face of many, many
predictors, sometimes outnumbering our sample points. As another
example, consider any particular approach where the importance
metric might be something like the drop in accuracy when the variable
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is excluded.
Variable importance was given almost full weight in the discussion

of typical applied research in the past, based on statistical significance
results from a one-shot analysis, and virtually ignorant of prediction
on new data. We still have the ability to focus on feature performance
with ML techniques, while shifting more of the focus toward prediction
at the same time. For the uninitiated, it might require new ways of
thinking about how one measures importance though.

Textual Analysis

In some situations the data of interest is not in a typical matrix form
but in the form of textual content, i.e. a corpus of documents (loosely
defined). In this case, much of the work (like in most analyses but per-
haps even more so) will be in the data preparation, as text is rarely if
ever in a ready-to-analyze state. The eventual goals may include using
the word usage in the prediction of an outcome, perhaps modeling the
usage of select terms, or examining the structure of the term usage
graphically as in a network model. In addition, machine learning pro-
cesses might be applied to sounds (acoustic data) to discern the speech
characteristics and other information.

Bayesian Approaches

It should be noted that the approaches outlined in this document
are couched in the frequentist tradition. But one should be aware
that many of the concepts and techniques would carry over into the
Bayesian perspective, and even some machine learning techniques
might only be feasible or make more sense within the Bayesian frame-
work (e.g. online learning).

More Stuff

Aside from what has already been noted, there still exists a great many
applications for ML such as data set shift 45, deep learning46, semi- 45 Used when fundamental changes

occur between the data a learner is
trained on and the data coming in for
further analysis.
46 Learning at different levels of repre-
sentation, e.g. from an image regarding
a scene to the concepts used to describe
it.

supervised learning47, online learning48, and many more.

47 Learning with both labeled and
unlabeled data.
48 Learning from a continuous stream of
data.
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Summary
Cautionary Notes

A standard mantra in machine learning and statistics generally is that
there is no free lunch. All methods have certain assumptions, and if
those don’t hold the results will be problematic at best. Also, even if
in truth learner A is better than B, B can often outperform A in the
finite situations we actually deal with in practice. Furthermore, being
more complicated doesn’t mean a technique is better. As previously
noted, incorporating regularization and cross-validation goes a long
way toward to improving standard techniques, and they may perform
quite well in some situations.

Some Guidelines

Here are some thoughts to keep in mind, though these may be applica-
ble to applied statistical practice generally.

More data beats a cleverer algorithm, but a lot of data is not enough by
itself49. 49 Domingos (2012)

Avoid overfitting.

Let the data speak for itself.

"Nothing is more practical than a good theory."50 50 Kurt Lewin, and iterated by V. Vapnik
for the machine learning context.

While getting used to ML, it might be best to start from simpler ap-
proaches and then work towards more black box ones that require
more tuning. For example, naive Bayes→ logistic regression→ knn→
svm.

Drawing up a visual path of your process is a good way to keep your
analysis on the path to your goal. Some programs can even make this
explicit (e.g. RapidMiner, Weka).

Keep the tuning parameter/feature selection process separate from the
final test process for assessing error.

Learn multiple models, selecting the best or possibly combining them.

Conclusion

It is hoped that this document sheds some light on some areas that
might otherwise be unfamiliar to some applied researchers. The field
of statistics has rapidly evolved over the past two decades. The tools
available are myriad, and expanding all the time. Rather than being
overwhelmed, one should embrace the choice available, and have some
fun with your data.
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Brief Glossary of Common
Terms
bias could mean the intercept (e.g. in neural nets), typically refers to

the bias in bias-variance decomposition

regularization, penalization, shrinkage The process of adding a penalty
to the size of coefficients, thus shrinking them towards zero but
resulting in less overfitting (at an increase to bias)

classifier specific model or technique (i.e. function) that maps observa-
tions to classes

confusion matrix a table of predicted class membership vs. true class
membership

hypothesis a specific model h(x) of all possible in the hypothesis space
H

input, feature, attribute independent variable, predictor variable, col-
umn

instance, example observation, row

learning model fitting

machine learning a form of statistics utilizing various algorithms with a
goal to generalize to new data situations

supervised has a dependent variable

target, label dependent variable, response, the outcome of interest

unsupervised no dependent variable; think clustering, PCA etc.

weights coefficients, parameters
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