• Machine Learning
  • Preface
  • Introduction
    • Explanation & Prediction
    • Terminology
    • Supervised vs. Unsupervised
    • Tools you already have
      • The Standard Linear Model
      • Logistic Regression
      • Expansions of Those Tools
  • Concepts
    • Loss Functions
      • Continuous Outcomes
      • Categorical Outcomes
    • Regularization
      • R Example
    • Bias-Variance Tradeoff
      • Bias & Variance
      • The Tradeoff
      • Diagnosing Bias-Variance Issues & Possible Solutions
      • Bias-Variance Summary
    • Cross-Validation
      • Adding Another Validation Set
      • K-fold Cross-Validation
      • Bootstrap
      • Other Stuff
  • Opening the Black Box
    • Process Overview
      • Data Preparation
      • Model Selection
      • Model Assessment
    • The Dataset
    • R Implementation
    • Feature Selection & The Data Partition
    • Regularized Regression
      • Strengths & Weaknesses
      • Final Thoughts
    • \(k\)-nearest Neighbors
      • Strengths & Weaknesses
      • Final Thoughts
    • Neural Networks
      • Strengths & Weaknesses
      • Final Thoughts
    • Trees & Forests
      • Understanding the Results
      • Strengths & Weaknesses
      • Final Thoughts
    • Support Vector Machines
      • Strengths & Weaknesses
      • Final Thoughts
  • Wrap-up
    • Unsupervised Learning
      • Clustering
      • Latent Variable Models
      • Graphical Structure
      • Imputation
    • Ensembles
      • Bagging
      • Boosting
      • Stacking
    • Deep Learning
    • Feature Selection & Importance
    • Natural Language Processing/Text Analysis
    • Bayesian Approaches
    • More Stuff
    • Summary
      • Cautionary Notes
      • Some Guidelines
      • Conclusion
  • Appendix
    • Bias Variance Demo
    • Programming Languages
      • R
      • Python
      • Other
    • Local Interpretable Model-agnostic Explanations
    • Various Variable Importance Measures
    • Brief Glossary of Common Terms
  • References
  • MC logo

Machine Learning

Machine Learning

Michael Clark https://m-clark.github.io/ University of Michigan: CSCAR University of Michigan: Advanced Research Computing

2019-03-25