brms: Mo’ models!
- GAM
- Distributional response (e.g. model the variance as well as the mean)
- Gaussian Processes
- ZIP
- Multivariate
- Missing data imputation from a Bayesian approach
- Measurement error
# additional distributions
model = brm(y ~ x + z, family = skew_normal,
student,
shifted_lognormal,
weibull,
frechet,
gen_extreme_value,
exgaussian,
wiener,
Beta,
von_mises,
asym_laplace,
hurdle_poisson,_negbinomial,_gamma,_lognormal,
zero_inflated_poisson,_negbinomial,_beta,_binomial; zero_one_inflated_beta,
categorical,
ordinal: cumulative, sratio, cratio, acat)
# model the variance as well as the mean
fit1 <- brm(bf(y ~ x + z, sigma ~ x),
data = dat1,
family = gaussian)
# missing values
bform <-
bf(bmi | mi() ~ age * mi(chl)) +
bf(chl | mi() ~ age) + set_rescor(FALSE)
fit <- brm(bform, data = nhanes)
# non-linear model with known form
nlform <- bf(cum ~ ult * (1 - exp(-(dev / theta)^omega)),
ult ~ 1 + (1 | AY),
omega ~ 1,
theta ~ 1,
nl = TRUE)
# measurement error
fit1 <- brm(y ~ me(x1, sdx) + me(x2, sdx),
data = dat,
save_mevars = TRUE)