Setting priors

One can set priors with the appropriate arguments to the model function

Argument Used in Applies to
prior_intercept All modeling functions except stan_polr and stan_nlmer Model intercept, after centering predictors.
prior All modeling functions Regression coefficients. Does not include coefficients that vary by group in a multilevel model (see prior_covariance).
prior_aux stan_glm*, stan_glmer*, stan_gamm4, stan_nlmer Auxiliary parameter, e.g. error SD (interpretation depends on the GLM).
prior_covariance stan_glmer*, stan_gamm4, stan_nlmer Covariance matrices in multilevel models with varying slopes and intercepts. See the stan_glmer vignette for details on this prior.


The stan_polr, stan_betareg, and stan_gamm4 functions also provide additional arguments specific only to those models:

Argument Used only in Applies to
prior_smooth stan_gamm4 Prior for hyper-parameters in GAMs (lower values yield less flexible smooth functions).
prior_counts stan_polr Prior counts of an ordinal outcome (when predictors at sample means).
prior_z stan_betareg Coefficients in the model for phi.
prior_intercept_z stan_betareg Intercept in the model for phi.
prior_phi stan_betareg phi, if not modeled as function of predictors.